4t^2/3=15-17^1/3

Simple and best practice solution for 4t^2/3=15-17^1/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4t^2/3=15-17^1/3 equation:



4t^2/3=15-17^1/3
We move all terms to the left:
4t^2/3-(15-17^1/3)=0
We get rid of parentheses
4t^2/3-15+17^1/3=0
We multiply all the terms by the denominator
4t^2-15*3+17^1=0
We add all the numbers together, and all the variables
4t^2-28=0
a = 4; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·4·(-28)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{7}}{2*4}=\frac{0-8\sqrt{7}}{8} =-\frac{8\sqrt{7}}{8} =-\sqrt{7} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{7}}{2*4}=\frac{0+8\sqrt{7}}{8} =\frac{8\sqrt{7}}{8} =\sqrt{7} $

See similar equations:

| 3y+7=2y+17 | | 3x^2-47x+71=0 | | 2t^2-17t-100=0 | | 4x=158 | | 1800=15x+1200 | | 13x+15=7x+17 | | 11=2*x+7 | | 1/2p(2)=4 | | 4g-50=-14 | | 6x-15=-27+4x | | (13/31)^x=961/169 | | 4x-2x-30=10 | | 6=2z-8 | | 140=35+x | | 3x+4x+7x=672 | | 4.8x+52=3.2x+10 | | 35x3-18x2+1=0 | | 2b+b+4=14 | | 11x-8=7x-5 | | 9x+30+12x=180 | | 3^x*3^x*3^x=333 | | 13=v/3-9 | | (11x+1)=-0.2 | | 9-s=-8 | | 2500=196=x2 | | 4(2t-1=8-4t | | 216=-8(4n-7) | | 2x^2+18x+41=0 | | 325/8=5x | | 3x-111=1000 | | 400/x=225 | | -413.5=-15.9n |

Equations solver categories